
The Price of Attention:

Attaching Bitcoin Fees to Nostr Events

Thomas Voegtlin
electrum.org

November 10, 2025

Abstract

Nostr is the first decentralized social messaging protocol to be successful, thanks
to its seamless architecture. However, one remaining issue is spam: How can relays
prevent malicious actors from uploading petabytes of undersired generated content?
Here we propose a spam filter based on proofs of monetary sacrifice, that can be
redeemed by the Bitcoin miners. Users decide how much fee they attach to Nostr
events. Relays filter out events that have not received enough fees. Users set a fee
threshold under which they do not wish to see content posted by others. This sets a
price for spam, and creates a market for attention.

1 Introduction

Nostr is an open and decentralized messaging protocol that gives users control over the
content they see. Thanks to its versatility, Nostr has the potential to replace centralized
social media applications and platforms, and to free users from algorithmic choices imposed
by centralized entities. However, since posting content is essentially free, malicious actors
can potentially upload large amounts of data and overload Nostr relays. In the absence of
spam filters, users tend to restrict what they see to content posted by accounts they already
follow, which tends to amplify the echo chamber effect.

Proof-of-work has been proposed as a spam filter for Nostr [1]. This works by mining
event IDs that start with leading zeroes, similar to the hash of a Bitcoin block. One issue
with proof-of-work is that various Nostr clients run on different hardware, that are greatly
inequal in terms of hashing power. Another proposal, called expensive relay, requires users
to pay relays in order to have their events stored and relayed [2]. Unfortunately, there is no
way for other relays to verify that the payment was real, and there is no incentive for relays
to cooperate.

Here we propose to filter spam by sending fees to the Bitcoin miners, and by attaching
public proofs that payments have been made to Nostr events. This is a form of delegated
proof-of-work, where purchased hashing power contributes to the security of the Bitcoin
network.

1

2 Notary

Nostr relies on two types of entities: clients and relays. Relays aggregate content uploaded
by clients, and relay it to other clients. Users select content they like, and mirror it to other
relays. Here we introduce a third type of participant: Notaries.

Notarization is the commitment of data to the blockchain. A notary creates a Merkle
tree from an arbitrary large list of documents hashes, and commit the root hash of the tree
to the blockchain. The length of each proof is logarithmic in the length of the dataset size.
This can be used to create a proof that a document existed at the time the Bitcoin block
was mined [3].

Here we use notarization to create a proof that a certain amount was paid for a given
Nostr event. Since the spent amount will be claimed by the Bitcoin miners, we call this
proof-of-burn.

1. Users decide how much fee they want to see attached to Nostr events. Users pay
notaries to create proofs-of-burn: a proof that an event ID was commited to the
Bitcoin blockchain, and that a certain amount has been paid to the Bitcoin miners.
The proof-of-burn is broadcast as a separate Nostr event.

2. Users set a spam threshold: An amount of burnt bitcoins under which they do not want
to see events posted by other users. This is akin to setting a price on one’s attention.
Users may relax this rule for pubkeys they follow.

3. Relays set their own spam threshold, under which they will not relay events. Relays
may temporarily store events that have not received enough proof of burn. Alterna-
tively, Nostr events and their proof of burn could be relayed together, by implementing
a form of package relaying.

4. Users may pay for their own events, or for events posted by others. This implements
an upvoting mechanism: It is possible to give increased visibility to someone else’s
content by attaching fees to it.

Notaries receive micro-payments from users, and users trust that notaries will commit the
requested event IDS and burn the requested amount. In order to cover for their expenses,
notaries may charge a notarization fee on top of the amount that is burnt. There is no
constraint on how many notaries may commit root hashes in the same block (other than
the size of the block). A user may pay several notaries simultaneously for the same hash, if
they wish to do so.

Notarization is not trustless; a notary could accept payments and keep for themselves
the amount they are supposed to burn. This could be mitigated using reputation and public
proofs of payment, e.g. the preimage of a Lightning invoice that includes event ID, amount
to burn and timestamp in its metadata.

2

3 Merkle-sum tree

A notary creates a notarization transaction that commits the root hash of a Merkle tree to
the Bitcoin blockchain, and that sends a given amount to the Bitcoin miners. For each leaf
of the tree, we need to create a proof that it contributed to a certain fraction of the total
amount burnt by the Bitcoin transaction.

1 1 2 4

\ / \ /

\/ \/

2 6

\ /

\/

8

Figure 1: Merkle-Sum tree. The hash of each leaf commits to a certain amount, and the
hash of each node commits to the amounts attached to its parents.

We use a Merkle-Sum tree in order distribute the provable burnt amount between the
leafs of the tree. Each node of the tree has a hash h and a value v. The hash of an inner
node N commits to the hashes and values of its parents [4]:

hN = H(Node prefix||hL||vL||hR||vR)

whereH is a hash function, L andR denote the node’s left and right parents, and Node prefix

is a constant. The inner node value is:

vN = vL + vR

The proofs provided by a Merkle-Sum tree demonstrate that the amount at a given leaf
is included in the amount at the root of the tree. The Merkle proof is a list of (h, v) pairs
at the neighbour nodes, as well as the position of the leaf in the tree (this is needed in order
to know whether we hash with the left or right neighbour).

Merkle-Sum trees are typically used to create proofs of reserves for Bitcoin exchanges. In
that case, an exchange can prove to a user that their balance is included in the sum, without
the exchange disclosing all account balances. Here the amount at the root of the tree is the
amount burnt by the Bitcoin transaction. Thus, proof verification must check that the root
hash of the tree is written to the Bitcoin blockchain, and that the burnt amount matches
the amount at the root of the tree.

In order to make leaf hashes unique, the user requesting the notarization chooses a
random nonce, that is included in the leaf hash. The leaf hash is defined as:

hleaf = H(Leaf prefix||event id||leaf value||upvoter pubkey||nonce)

where Leaf prefix is a constant, and upvoter pubkey is the public key of the user
requesting the notarization.

In order to prove that they requested the notarization, the upvoter creates a signature
upvoter signature of hleaf . It is possible to replace upvoter pubkey with blank bytes if
one wishes to upvote an event anonymously; in that case, the proof does not require an
upvoter signature.

3

4 Notarization transaction

Paying the Bitcoin miners can be achieved by attaching a large mining fee to the notarization
transaction. However, if we did that, miners could add to the blockchain notarization
transactions that have never been seen by other miners. This would give them the possibility
to notarize content for free.

In order to prevent that, we create a transaction output that can be redeemed by anyone,
however with a CSV delay:

p2wsh(<csv delay> OP CHECKSEQUENCEVERIFY)

The CSV delay ensures that the redeeming transaction will be in a different block than
the notarization transaction, and thus that the existence of this UTXO will have been public,
giving everyone the opportunity to claim it. In practice, Bitcoin miners will be able to claim
these funds before everyone else. Therefore, sending to this output is equivalent to a sacrifice
to the Bitcoin miners [5]1. Using a dedicated output for the burn adds the constraint that
the burnt amount must be higher or equal to the dust limit.

In addition, the transaction must include the root hash of the Merkle tree. We use an
OP RETURN output for that:

OP RETURN(magic prefix || <root hash> || <csv delay>)

The OP RETURN output includes a magic prefix and the CSV delay value used in the
redeem script, so that Bitcoin miners can recognize the transaction and do not need to
guess the CSV delay. Thus, no off-chain information is required to claim the funds. The
CSV delay can be chosen by notaries.

A notarization transaction must include a single OP RETURN output and a corresponding
burn output. Proof verification must check that the CSV value matches with the scriptpub-
key of the burn output.

Note that the existence of distinct outputs for the burn and for the Merkle root hash is
dictated by the need to create standard transactions. We use p2wsh in the burn output in
order to ensure that the transaction is standard. If instead we could use bare output scripts,
then it would be possible to write the root hash in the script itself. What matters is that
the root hash is visible at the time the notarization transaction is published.

1BIP 65 discusses sacrifice to Bitcoin miners using OP CLTV instead of OP CSV. However, for the purpose
of retrospectively proving that miners did not cheat, OP CLTV cannot be used. Indeed, a miner could publish
the notarization transaction in the same block as the the transaction that redeems it.

4

5 Proof-of-burn

A proof-of-burn contains the following fields:

1. chain: Blockchain genesis hash. Can be omitted if using Bitcoin mainnet.

2. event id: Upvoted Nostr event ID

3. leaf value: Burnt value.

4. nonce: Nonce used in leaf hash.

5. merkle hashes: List of (hash, value) pairs

6. merkle index: Position in the Merkle tree

7. block height: Block height of the transaction.

8. txid: Transaction ID of the notarization transaction.

9. upvoter pubkey: upvoter pubkey (optional)

10. upvoter signature: upvoter signature of hleaf (optional)

In order to verify this proof, a verifier:

1. Verifies that the notarization transaction is in the blockchain (or mempool)

2. Verifies that the notarization transaction has an OP RETURN output, extracts the root
hash and CSV delay from it.

3. Verifies that the transaction has a burn output with a scriptpubkey that corresponds
to the extracted CSV delay.

4. Reconstructs hleaf from event id, leaf value, nonce and optionally upvoter pubkey

5. Verifies that the extracted root hash matches the root hash derived from hleaf and
merkle hashes, merkle index

6. If upvoter pubkey is provided, verifies upvoter signature.

5

6 Upvoting events

Proofs of burn are published as Nostr events, called upvoting events. This does not require
any modification of the Nostr protocol, and it is consistent with how Nostr reactions cur-
rently work. We use an addressable event (30000 ≤ KIND UPVOTING EVENT < 40000), defined
as follows:

{

"kind": KIND_UPVOTING_EVENT, # addressable

"created_at": <timestamp>,

"content": "",

"tags": [

["version", <version>], # upvoting event version number

["chain", chain], # genesis hash (optional)

["e", <event_id>], # upvoted event ID

["d", <leaf_hash>], # leaf hash

["n", <txid>, # notarization transaction ID

<block_height, # block height (0 if unconfirmed)

<nonce>, # nonce used in leaf_hash

<leaf_value>, # amount burnt

<merkle_index>, # position in Merkle tree

<merkle_hashes>] # serialized list of (hash:value)

["p", <event_pubkey>], # upvoted event pubkey (optional)

["u", <upvoter_pubkey>, # upvoter pubkey (optional)

<upvoter_signature>], # upvoter signature of leaf_hash

]

"pubkey": "<pubkey>", # pubkey publishing this event

"id": "<id>", # id for this event

"sig": "<signature>" # signature for this event

}

Upvoting events are replaceable, because an unconfirmed notarization transaction may
be updated by the notary, which would deprecate all the proofs in that transaction. Event
replacement may also be needed in case of blockchain reorgs. Thus, it is convenient to let
the notary publish upvoting events; indeed, the upvoter might not be online when the proof
needs to be updated.

Note that it is possible to create different upvoting events for the same proof, for example
by republishing existing events with a new pubkey2. Therefore, in order to correctly count
upvotes, one needs to check that they have different leaf hashes. For a given leaf hash, relays
should keep only one upvoting event.

Once a proof is final, the upvoter may want to republish it with their own upvoter pubkey.
Only then can the content field be considered as originating from the upvoter. Until that
is done, the content field should be discarded. For a given leaf hash, relays should favor
upvoting events that are signed by the upvoter pubkey.

2In addition, third parties may replay an already published upvoter pubkey and upvoter signature in
a new notarization, which would have the same leaf hash.

6

7 Conclusion

Proof verification is easier to implement for relays if they run a local Bitcoin node, that can
test blockchain inclusion or memory pool acceptance locally. Nostr clients who do not wish
to implement blockchain logic may have to trust relays or third parties regarding partial or
full proof verification.

In order to avoid waiting for a new block, users and relays may use memory pool accep-
tance as a good enough proof that fees have been paid. This trusts that the notary will not
replace the burn transaction with another transaction that spends to himself. That, com-
bined with a cap on the amount of unconfirmed content seen by relays, might be acceptable
in the context of spam protection.

Notaries may replace-by-fee their transactions frequently, in order to add new events to
the current Merkle tree. For this to be economical, additional notary fees need to cover
the cost of replacing the current transaction. Given enough notarization requests, it is
expected that the notarization transaction will undergo multiple replacements, and that its
mining fee may overshoot normal memory pool fees. Fee estimators can easily discard those
transactions if this becomes an issue.

Relays may want to aggregate the upvotes received by an event, and to relay them
together. In addition, if light clients decide to trust relays with proof verification, relays
may as well count upvotes received by popular events, and serve the count to clients, instead
of sending all the proofs.

If successful, proof-of-burn might create additional income for Bitcoin miners. Proof-
of-burn income will be independent from block subsidy, and decorrelated from transaction
fees. Interestingly, this proposal creates an incentive for Bitcoin miners to spam unprotected
Nostr relays, in order to force users to pay for their posts.

Implementation

A reference implementation of the notary is available at [6].

References

[1] NIP13 https://nips.nostr.com/13

[2] Fiatjaf Expensive Relay https://github.com/fiatjaf/expensive-relay

[3] Peter Todd (2016) OpenTimestamps: Scalable, Trust-Minimized, Distributed Times-
tamping with Bitcoin https://petertodd.org

[4] Chalkias et al. (2022) Broken Proofs of Solvency in Blockchain Custodial Wallets and
Exchanges https://eprint.iacr.org/2022/043.pdf

[5] BIP65 Proving sacrifice to miners’ fees
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki

[6] https://github.com/spesmilo/notary

7

